74 research outputs found

    Non-linear statistical downscaling of present and LGM precipitation and temperatures over Europe

    Get PDF
    International audienceLocal-scale climate information is increasingly needed for the study of past, present and future climate changes. In this study we develop a non-linear statistical downscaling method to generate local temperatures and precipitation values from large-scale variables of a Earth System Model of Intermediate Complexity (here CLIMBER). Our statistical downscaling scheme is based on the concept of Generalized Additive Models (GAMs), capturing non-linearities via non-parametric techniques. Our GAMs are calibrated on the present Western Europe climate. For this region, annual GAMs (i.e. models based on 12 monthly values per location) are fitted by combining two types of large-scale explanatory variables: geographical (e.g. topographical information) and physical (i.e. entirely simulated by the CLIMBER model). To evaluate the adequacy of the non-linear transfer functions fitted on the present Western European climate, they are applied to different spatial and temporal large-scale conditions. Local projections for present North America and Northern Europe climates are obtained and compared to local observations. This partially addresses the issue of spatial robustness of our transfer functions by answering the question "does our statistical model remain valid when applied to large-scale climate conditions from a region different from the one used for calibration?". To asses their temporal performances, local projections for the Last Glacial Maximum period are derived and compared to local reconstructions and General Circulation Model outputs. Our downscaling methodology performs adequately for the Western Europe climate. Concerning the spatial and temporal evaluations, it does not behave as well for Northern America and Northern Europe climates because the calibration domain may be too different from the targeted regions. The physical explanatory variables alone are not capable of downscaling realistic values. However, the inclusion of geographical-type variables – such as altitude, advective continentality and moutains effect on wind (W–slope) – as GAM explanatory variables clearly improves our local projections

    Nonstationarities of regional climate model biases in European seasonal mean temperature and precipitation sums

    Get PDF
    Bias correcting climate models implicitly assumes stationarity of the correction function. This assumption is assessed for regional climate models in a pseudo reality for seasonal mean temperature and precipitation sums. An ensemble of regional climate models for Europe is used, all driven with the same transient boundary conditions. Although this model-dependent approach does not assess all possible bias non-stationarities, conclusions can be drawn for the real world. Generally, biases are relatively stable, and bias correction on average improves climate scenarios. For winter temperature, bias changes occur in the Alps and ice covered oceans caused by a biased forcing sensitivity of surface albedo; for summer temperature, bias changes occur due to a biased sensitivity of cloud cover and soil moisture. Precipitation correction is generally successful, but affected by internal variability in arid climates. As model sensitivities vary considerably in some regions, multi model ensembles are needed even after bias correction. Key Points: - Bias correction in general improves future climate simulations - Cloud cover, soil moisture and albedo changes may cause temperature bias changes - Precipitation biases in arid regions are affected by internal variabilit

    Present and LGM permafrost from climate simulations : contribution of statistical downscaling

    Get PDF
    We quantify the agreement between permafrost distributions from PMIP2 (Paleoclimate Modeling Intercomparison Project) climate models and permafrost data. We evaluate the ability of several climate models to represent permafrost and assess the variability between their results. <br><br> Studying a heterogeneous variable such as permafrost implies conducting analysis at a smaller spatial scale compared with climate models resolution. Our approach consists of applying statistical downscaling methods (SDMs) on large- or regional-scale atmospheric variables provided by climate models, leading to local-scale permafrost modelling. Among the SDMs, we first choose a transfer function approach based on Generalized Additive Models (GAMs) to produce high-resolution climatology of air temperature at the surface. Then we define permafrost distribution over Eurasia by air temperature conditions. In a first validation step on present climate (CTRL period), this method shows some limitations with non-systematic improvements in comparison with the large-scale fields. <br><br> So, we develop an alternative method of statistical downscaling based on a Multinomial Logistic GAM (ML-GAM), which directly predicts the occurrence probabilities of local-scale permafrost. The obtained permafrost distributions appear in a better agreement with CTRL data. In average for the nine PMIP2 models, we measure a global agreement with CTRL permafrost data that is better when using ML-GAM than when applying the GAM method with air temperature conditions. In both cases, the provided local information reduces the variability between climate models results. This also confirms that a simple relationship between permafrost and the air temperature only is not always sufficient to represent local-scale permafrost. <br><br> Finally, we apply each method on a very different climate, the Last Glacial Maximum (LGM) time period, in order to quantify the ability of climate models to represent LGM permafrost. The prediction of the SDMs (GAM and ML-GAM) is not significantly in better agreement with LGM permafrost data than large-scale fields. At the LGM, both methods do not reduce the variability between climate models results. We show that LGM permafrost distribution from climate models strongly depends on large-scale air temperature at the surface. LGM simulations from climate models lead to larger differences with LGM data than in the CTRL period. These differences reduce the contribution of downscaling

    Higher probability of compound flooding from precipitation and storm surge in Europe under anthropogenic climate change

    Get PDF
    In low-lying coastal areas, the co-occurrence of high sea level and precipitation resulting in large runoff may cause compound flooding (CF). When the two hazards interact, the resulting impact can be worse than when they occur individually. Both storm surges and heavy precipitation, as well as their interplay, are likely to change in response to global warming. Despite the CF relevance, a comprehensive hazard assessment beyond individual locations is missing, and no studies have examined CF in the future. Analyzing co-occurring high sea level and heavy precipitation in Europe, we show that the Mediterranean coasts are experiencing the highest CF probability in the present. However, future climate projections show emerging high CF probability along parts of the northern European coast. In several European regions, CF should be considered as a potential hazard aggravating the risk caused by mean sea level rise in the future

    Exploring the meteorological potential for planning a high performance European Electricity Super-grid: optimal power capacity distribution among countries

    Get PDF
    The concept of a European Super-grid for electricity presents clear advantages for a reliable and affordable renewable power production (photovoltaics and wind). Based on the mean-variance portfolio optimization analysis, we explore optimal scenarios for the allocation of new renewable capacity at national level in order to provide to energy decision-makers guidance about which regions should be mostly targeted to either maximize total production or reduce its day-to-day variability. The results show that the existing distribution of renewable generation capacity across Europe is far from optimal: i.e., a 'better' spatial distribution of resources could have been achieved with either a ~31% increase in mean power supply (for the same level of day-to-day variability) or a ~37.5% reduction in day-to-day variability (for the same level of mean productivity). Careful planning of additional increments in renewable capacity at the European level could, however, act to significantly ameliorate this deficiency. The choice of where to deploy resources depends, however, on the objective being pursued – on the one hand, if the goal is to maximize average output, then new capacity is best allocated in the countries with highest resources, whereas investment in additional capacity in a north/south dipole pattern across Europe would act to most reduce daily variations and thus decrease the day-to-day volatility of renewable power supply

    Future air quality in Europe: a multi-model assessment of projected exposure to ozone

    Get PDF
    In order to explore future air quality in Europe at the 2030 horizon, two emission scenarios developed in the framework of the Global Energy Assessment including varying assumptions on climate and energy access policies are investigated with an ensemble of six regional and global atmospheric chemistry transport models. <br><br> A specific focus is given in the paper to the assessment of uncertainties and robustness of the projected changes in air quality. The present work relies on an ensemble of chemistry transport models giving insight into the model spread. Both regional and global scale models were involved, so that the ensemble benefits from medium-resolution approaches as well as global models that capture long-range transport. For each scenario a whole decade is modelled in order to gain statistical confidence in the results. A statistical downscaling approach is used to correct the distribution of the modelled projection. Last, the modelling experiment is related to a hind-cast study published earlier, where the performances of all participating models were extensively documented. <br><br> The analysis is presented in an exposure-based framework in order to discuss policy relevant changes. According to the emission projections, ozone precursors such as NO<sub>x</sub> will drop down to 30% to 50% of their current levels, depending on the scenario. As a result, annual mean O<sub>3</sub> will slightly increase in NO<sub>x</sub> saturated areas but the overall O<sub>3</sub> burden will decrease substantially. Exposure to detrimental O<sub>3</sub> levels for health (SOMO35) will be reduced down to 45% to 70% of their current levels. And the fraction of stations where present-day exceedences of daily maximum O<sub>3</sub> is higher than 120 μg m<sup>−3</sup> more than 25 days per year will drop from 43% down to 2 to 8%. <br><br> We conclude that air pollution mitigation measures (present in both scenarios) are the main factors leading to the improvement, but an additional cobenefit of at least 40% (depending on the indicator) is brought about by the climate policy

    Process-conditioned bias correction for seasonal forecasting: a case-study with ENSO in Peru

    Get PDF
    This work assesses the suitability of a first simple attempt for process-conditioned bias correction in the context of seasonal forecasting. To do this, we focus on the northwestern part of Peru and bias correct 1- and 4-month lead seasonal predictions of boreal winter (DJF) precipitation from the ECMWF System4 forecasting system for the period 1981–2010. In order to include information about the underlying large-scale circulation which may help to discriminate between precipitation affected by different processes, we introduce here an empirical quantile–quantile mapping method which runs conditioned on the state of the Southern Oscillation Index (SOI), which is accurately predicted by System4 and is known to affect the local climate. Beyond the reduction of model biases, our results show that the SOI-conditioned method yields better ROC skill scores and reliability than the raw model output over the entire region of study, whereas the standard unconditioned implementation provides no added value for any of these metrics. This suggests that conditioning the bias correction on simple but well-simulated large-scale processes relevant to the local climate may be a suitable approach for seasonal forecasting. Yet, further research on the suitability of the application of similar approaches to the one considered here for other regions, seasons and/or variables is needed.This work has received funding from the MULTI-SDM project (MINECO/FEDER, CGL2015-66583-R). The authors are grateful to SENAMHI for the observational data, which are publicly available from http://www.senamhi.gob.pe/?p=data-historica, and to the European Center for Medium-Range Weather Forecast (ECMWF), for the access to the System4 seasonal forecasting hindcast

    Daily precipitation statistics in a EURO-CORDEX RCM ensemble: added value of raw and bias-corrected high-resolution simulations

    Get PDF
    Daily precipitation statistics as simulated by the ERA-Interim-driven EURO-CORDEX regional climate model (RCM) ensemble are evaluated over two distinct regions of the European continent, namely the European Alps and Spain. The potential added value of the high-resolution 12 km experiments with respect to their 50 km resolution counterparts is investigated. The statistics considered consist of wet-day intensity and precipitation frequency as a measure of mean precipitation, and three precipitation-derived indicators (90th percentile on wet days?90pWET, contribution of the very wet days to total precipitation?R95pTOT and number of consecutive dry days?CDD). As reference for model evaluation high resolution gridded observational data over continental Spain (Spain011/044) and the Alpine region (EURO4M-APGD) are used. The assessment and comparison of the two resolutions is accomplished not only on their original horizontal grids (approximately 12 and 50 km), but the high-resolution RCMs are additionally regridded onto the coarse 50 km grid by grid cell aggregation for the direct comparison with the low resolution simulations. The direct application of RCMs e.g. in many impact modelling studies is hampered by model biases. Therefore bias correction (BC) techniques are needed at both resolutions to ensure a better agreement between models and observations. In this work, the added value of the high resolution (before and after the bias correction) is assessed and the suitability of these BC methods is also discussed. Three basic BC methods are applied to isolate the effect of biases in mean precipitation, wet-day intensity and wet-day frequency on the derived indicators. Daily precipitation percentiles are strongly affected by biases in the wet-day intensity, whereas the dry spells are better represented when the simulated precipitation frequency is adjusted to the observed one. This confirms that there is no single optimal way to correct for RCM biases, since correcting some distributional features typically leads to an improvement of some aspects but to a deterioration of others. Regarding mean seasonal biases before the BC, we find only limited evidence for an added value of the higher resolution in the precipitation intensity and frequency or in the derived indicators. Thereby, evaluation results considerably depend on the RCM, season and indicator considered. High resolution simulations better reproduce the indicators? spatial patterns, especially in terms of spatial correlation. However, this improvement is not statistically significant after applying specific BC methods.The authors are grateful to Prof. C. Schär for his helpful comments and E. van Meijgaard for making available the RACMO model data. We acknowledge the observational data providers. Calculations for WRF311F were made using the TGCC super computers under the GENCI time allocation GEN6877. The WRF331A from CRP-GL (now LIST) was funded by the Luxembourg National Research Fund (FNR) through grant FNR C09/SR/16 (CLIMPACT). The KNMI-RACMO2 simulations were supported by the Dutch Ministry of Infrastructure and the Environment. The CCLM and REMO simulations were supported by the Federal Ministry of Education and Research (BMBF) and performed under the Konsortial share at the German Climate Computing Centre (DKRZ). The CCLM simulations were furthermore supported by the Swiss National Supercomputing Centre (CSCS) under project ID s78. Part of the SMHI contribution was carried out in the Swedish Mistra-SWECIA programme founded by Mistra (the Foundation for Strategic Environmental Research). This work is supported by CORWES (CGL2010-22158-C02) and EXTREMBLES (CGL2010-21869) projects funded by the Spanish R&D programme and the European COST ACTION VALUE (ES1102). A. C. thanks the Spanish Ministry of Economy and Competitiveness for the funding provided within the FPI programme (BES-2011-047612 and EEBB-I-13-06354). We also thank two anonymous referees for their useful comments that helped to improve the original manuscript

    A computational study of the influence of surface roughness on material strength

    Get PDF
    In machine component stress analysis, it usually assumed that the geometry specified in CAD provides a fair representation of the geometry of the real component. While in particular circumstances, tolerance information, such as minimum thickness of a highly stressed region, might be taken into consideration, there is no standard practice for the representation of surface quality. It is known that surface roughness significantly influences fatigue life, but for this to be useful in the context of life prediction, there is a need to examine the nature of surface roughness and determine how best to characterise it. Non-smooth geometry can be represented in mathematics by fractals or other methods, but for a representation to have a practical value for a manufactured component, it is necessary to accept that there is a lower limit to surface profile measurement resolution. Resolution and mesh refinement also play a part in any computational analysis undertaken to assess surface profile effects: in the analyses presented, a nominal axi-symmetric geometry has been taken, with a finite non-smooth region on the boundary. Various surface roughness representations are modelled, and the significance of the characterized surface roughness type is investigated. It is shown that the applied load gives rise to a nominally uni-axial stress state of 90% of the yield, although surface roughness features have the effect of modifying the load path, and give rise to localized regions of plasticity near to the surface. The material of the test model is assumed to be elasto-plastic, and the development and evolution of plastic zones formed within the geometry are shown for multiple load cycles
    corecore